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Energy levels for double-well potentials in one-, two-, and three-
dimensional systems are calculated using the Hill determinant ap-
proach for several eigenstates and large values of the perturbation
parameters (A, Z%, Z2, Z%). Numerical results for some special cases
agree with those of previous workers where available. © 1996 Aca-
demic Press, Inc.

1. INTRODUCTION

The double-well potential for one-dimensional quantum
systems [1-11] has been the subject of numerous investiga-
tions, and the corresponding literature is consequently,
quite extensive. Although various aspects of the problem
have been the subject of much interesting work, both from
the analytical and the numerical point of view, com-
parable investigations have not been carried out in the
case of multidimensional systems [12].

There is a large number of physical and chemical systems
whose properties can be studied (modelled), assuming that
the potential function responsible for such properties is
well represented by means of a function with two valleys
and a barrier between them.

Examples of such potentials occur in the study of the
infrared spectra of the NH; molecule, infrared and Raman
spectra of hydrogen-bonded systems, inversion characteris-
tics of isomers, structural phase transitions, formation of
noble-gas monolayers on a graphite substrate, macroscopic
quantum coherence in super-conducting Josephson de-
vices, and so on [13-14]. In the theory of these problems,
the most important characteristics are related to the sepa-
ration between the two lowest-lying energy levels as it
defines the tunnelling rate through the double-well barrier.

In this work, the general form of Schrodinger equation
for the double-well potential in several dimensions system
can be written as

. /\)](I)(xb ) = E®(xy,...)

d (:)2
|:—2 2 + Vd(XI, veey Z'%I’ ..
1)

=1 0X7

(xl =XX =), X3= Z)-

Here, and subsequently, all the indices run over 1, 2, 3, so
that the coordinate x; runs over x, y, and z. The notation
d =1, 2, or 3 refers to the number of dimensions, A is a
positive perturbation parameter, and Z%, Z3, ZZ refer to
the depth of the potential well.

The solution of the Schrodinger equation for a nonsym-
metric double well in two and three dimensions has not
received the attention it deserves. This is unfortunate be-
cause there have been misconceptions in the literature
regarding the effect of two unequal minima in potential
functions on the infrared and Raman spectra of hydrogen-
bonded systems [13].

In the present paper, the Hill determinant approach is
applied to three examples: the double-well potential in
one dimension,

Vi(x; Z2,0) = = 272> + & ()
in two-dimensions,

V2(x7y;Z)2HZ§’)\): _Z% Z_Ziyz (3)

+ Aapx® + 2a,,x%y* + a,,)"],
and in three-dimensions,

VS(x9 y’ Za Zth ng Z%a )\)
= =722 = 2% — 722 + Maox* + ayy* + a2t (4)
+ 2a,, X% + 2a,.x°2% + 2a,,y°z°].

The potentials Vy(x; Z%,A), Va(x,y; Z%,Z2, ), and
Vi(x,y, 2, Z%, Z3, Z2, A) consist of two potential wells sep-
arated by a barrier. If the barrier were impenetrable to a
particle, there would be energy levels corresponding to the
motion of the particle in one or the other well, the same
for both wells. The fact that a passage through the barrier
is possible results in the splitting of each of these levels
into two neighboring ones, corresponding to states in which
the particle moves simultaneously in both wells.

The depth of the double well is controlled by the parame-
ters Z2, Z3, Z%, and A (see Figs. 1,2). The Hill determinant
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FIG.1. a.Double-well potential V;(x; Z2 = 10, A = 1); b. Double-well
potential V;(x; Z2=1000, A = 1).

approach works well for small and medium values of
Z3%,73,Z% at low values of A; as Z%, Z;, and Z? increase
the depth of the well increases and for a deep well the
convergence decreases.

Physically, when the potential well is very deep (for
large Z2, Z3, Z2 values) the classical turning points for the
lowest bound states are very close to the minimum of each
well; therefore the particle, even quantum mechanically,
can in the main see only the region of the potential near
the minima. The lower levels for this potential have there-
fore very nearly degenerate eigenvalues.

When Z%=Z%= 7%= 7% the potentials in two and
three dimensions have rotation symmetry, which makes it
easier to handle the calculations. We should comment here
that handling potential functions with symmetric behaviour
is preferable, because it is simpler and their computation

FIG. 2. Double-well potential V,(x,y; Z2 = Z;=17.5,1=1).
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is more quickly performed than nonsymmetric behaviour
and requires less memory.

The eigenvalue spectrum of the Schrodinger equation
(1) with Vy(xy, ...; Z,%[, ..., A) has the feature that the lower
eigenvalues are closely bunched in one group if the values
of the Z’s are sufficiently large. As Z3, Z;, and Z2 increase,
the magnitude of the splitting between these levels de-

creases; 1.e.,

|E1 - E()| = AEd:1 = 0 (5)
|E11 - E00| ~ |E11 - E10| =AE;,=0 (6)

|E111 — Eoool = |Eooo — Ero0l = | E100 — E110l = AE;—3 = 0.
(7)

The splitting AE will be small at the bottom of the well
and will increase as the levels approach the top of the
barrier. When AE, has its minimum value, the nearly de-
generate eigenfunctions have equal weight in each poten-
tial well.

The double-well potential given by Eq. (1) in two and
three dimensions is, in general, nonseparable in Cartesian
coordinates, showing nonsymmetrical behaviour and, due
to this behaviour, requires a great deal of computation to
arrive at our results.

The paper is organized as follows. Section one is con-
cerned with the Hill determinant approach and its use
to calculate the energy eigenvalues for the double-well
potentials in one, two, and three dimensions for several
eigenstates. Section 4 contains a discussion of the results.

2. THE HILL DETERMINANT APPROACH

The Hill determinant approach is a nonperturbative
technique used to treat the perturbed oscillator problem
in one, two, and three dimensions. Much of the traditional
literature on Hill determinants deals with one-dimensional
problems [15-31]; the extension to two or three dimensions
necessarily involves the use of a product basis set, leading
to large matrix or determinant problems, which are conve-
niently handled by a relaxation method.

However, despite the success of the Hill determinant
approach in calculating energy eigenvalues there has been
some theoretical debate [18, 19] about the question of
whether it can give ‘“‘false’ eigenvalues which do not corre-
spond to normalizable wavefunctions. The difficulties orig-
inally encountered by Flessa [18, 19] in connection with
application of the Hill determinant approach were investi-
gated by several workers [20-25], leading to some conclu-
sions about the conditions of applicability of the approach.
For example, Chaudhuri [20] treated anharmonic oscilla-
tors of the type (ax?> + bx* + cx®) and showed that, with
a particular choice of convergence factor of the form
exp(—ax* + Bx°), the algebraic of Hill determinant may



NONSYMMETRIC DOUBLE-WELL POTENTIALS

lead to incorrect eigenvalues; however, Hautot [21], in
turn, claimed that the use of this factor with variable 8
removes this inconsistency (see also [24, 27]).

2.1. The Double-Well Potential V(X; Z2, A) in One
Dimension and the Corresponding Recurrence Relation

The double-well potential V;(x; Z2, A) has two minima
at x = F¥x,, = Z/V2A and one local maximum at x = 0.
When Z2 is large, the potential minimum occurs at large
value of x, so that the wave function centered at x,,, does
not penetrate too much through the barrier separating the
two wells. The probability of finding the particle is locally
maximal at x = *x,,. Its low energy levels should involve
wave functions which present a maximal probability den-
sity at a position close to the minimum of the two-well
potential. In the case of very deep wells where the tunnel-
ing is very small our estimate | Ecyen — Eoqd| for the splitting
AE is generally too small.

To calculate the energy levels of the Schrodinger equa-
tion, we introduce a wavefunction which has the form

v, (x) = exp(—%xZ) S HMEY). (8

Substituting this wavefunction into the Schrodinger equa-
tion (1) leads to the following four-term difference
equation:

(M + )M + DH(M +1) = [4aM + a = EJHM)
+ (a2 + ZHH(M — 1) — XH(M — 2) = 0. )

We can either take H(0) = 1, with all the M’s even to get
an even solution, or take H(1), with all the M’s odd to get
an odd solution.

The condition that a nontrivial solution for the H(M)
exist is given by the vanishing of the following infinite de-
terminant:

E-a 2 0 0
+27 E-5a 12 0
A P+Z2 E-9%a 30
0 A P+Z7Z2 E-13a 56
D=1 0 A &+ Z: E—17a
0 0 0 N/
—A
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By using the rules for expanding a determinant and work-
ing up the last column, which has only two nonzero ele-
ments, we obtain the following recurrence relation for the
determinant D (M), obtained by truncating the matrix after
(M + 1) rows and columns:

D(M) = [E — 4aM — o]D(M — 1)
+ M(M -3 (e + Z)D(M — 2) (10)
— 16AM(M — (M — 1)(M — §D(M - 3),

where we can use the starting condition D(—1) = 1,
D) = E — a, at M = 1. D(1), D(2), and so on can
then be calculated for any assigned E value. If we use the
estimates E, and E, = E, + DE, with DE small, then for
each M the values of Dy (M) and D, (M) will give a pre-
dicted energy E at which Dg(M) would be zero. We can
find several roots for a particular M and we can also follow
a particular root as M increases to see whether it tends to
limit which is stable to some number of significant figures.

2.2. The Double-Well Potential in Two-Dimensions and
the Recurrence Relation

The Hill determinant approach is a very powerful tech-
nique for calculating eigenvalues in two-dimensional prob-
lems. In the present paper we extend the Hill determinant
approach to double-well potentials with equal depth
Z3and Z; (which allows us to deal with the symmetric
double-well potential) with its nearly triple degenerate en-
ergy levels (Eq, Eq1, E1p). We also treat the case of high
central barrier and unequal depth Z2 and Z3 (which allows
us to deal with the very asymmetric double-well poten-
tials). In order to get a clearer picture, we plot the double-
well potential Va(x,y; Z3, Z;, A) for different values of

90
E—-2la 132

o+ 72 E—4aM —a 2(M+1)2M +1)
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Z3,Z3,A. When Z3 and Z; are large, the potential mini-
mum occurs at large values of Z2 and Z§, so that the wave
function centered at x,, and y,, does not penetrate too
much through the central barrier; obviously this is not the
case for small values of Z%and Z;.

To begin our analysis, we take the wavefunction describ-
ing this system in the form:

Wny(X,y) = exp(—% (x* + y2):|

ME H(M, N)(xyM).

(11)

The next step is to substitute ¥, ,,(x, y) into the Schro-
dinger equation (1), and after some algebra, we obtain the
recurrence relation

Ra(M + N + 1) — E]JH(M, N) = W(M, N), (12)
with

W(M,N) = (M +2)(M + 1)H(M + 2, N)
+ (N +2)(N+ 1)H(M,N +2)
+ (o + Z)H(M - 2,N) (13)
+ (a? + Z)H(M,N —2) — A[ag,H(M — 4,N)
+2a,,H(M — 2, N — 2) + a,,H(M, N — 4)],

the recurrence relation (12) is used as follows. First, choose
the state numbers n, and n,(0, 1, 2, ...) which specify which
particular state is being treated. Next take initial values
(of My and Ny) to start the calculations, and the coefficient
H(M,, Ny)isset equal to one. All the H(M, N) with (M, N)
# (M, Ny) are then adjusted according to the assignment

(14)

for some fixed « and some trial E value, up to finite maxi-
mum values of M and N. The energy estimate is then
revised using the relation (14) for the special case M =
My, N = Ny. The revised energy E, is

H(M,N) = W(M, N)[2a(M + N + 1) — E]"!

E,=2a(My + Ny + 1) = W(Mo, Np),  (15)
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but it is sometimes useful to set the revised energy equal to

E:=RE,+ (1 — R)E, (16)
where (16) is understood as an assignment statement and
R is a relaxation parameter which can be changed in value
to help in stabilizing convergence to a desired eigenvalue.
After many cycles the energy estimate converges. The up-
per limits on M and N can then be increased and the
calculation repeated, until eventually the energy is not
affected by further increase in the upper limits. In matrix-
theoretic terms, the calculation is using a Gauss—Seidel
(R = 1) or successive overrelaxation (R # 1) approach to
calculate the low eigenvalues of a large matrix. Increasing
M and N corresponds to increasing the number of basis
states, i.e., the dimension of the matrix. In the present
approach the relevant matrix elements are very simple, as
seen from Eq. (12), and the iterative solution method,
although often only useful for low eigenvalues, avoids ex-
plicit storage and manipulation of large matrices.

2.3. The Recurrence Relation for the Double-Well
Potential in Three V(X,Y,Z;Z%,7Z2,Z%,))
Dimensions

The algebraic manipulations needed to derive the re-
quired recurrence relation in the three dimensions are simi-
lar to those which have been used previously in connection
with the two-dimensional case. The wavefunction is taken
to have the form for three dimensions,

¥y ) = exp| 5757+ )|
17)

> H(M, N, L)(xyNz").
If we use the wave function \If,,x,ny,,z(x, ¥, z) in the Schro-
dinger equation (1), after some algebra we obtain the fol-

lowing recurrence relations for three dimensions

[«(2M + 2N + 2L +3) — E|H(M,N, L) = W(M, N, L),
(18)

where

W(M,N,L)=(M+2)(M+1)H(M +2,N,L) + (N +2)(N+ 1)H(M,N + 2, L) + (L + 2)(L + 1)H(M, N, L + 2)
+(?+Z)HM —2,N,L) + (& + Z3)H(M,N — 2, L) + (o> + Z2)H(M,N, L - 2)
—AMaH(M —4,N, L) + a,,H(M,N — 4,L) + a..H(M,N, L — 4)]
—2A[a,H(M —2,N —2,L) + a..,H(M — 2, N, L = 2) + a,., H(M,N — 2, L — 2)].

(19)
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The strategy for computing the energy eigenvalues in this
case is similar to that which has been used to handle the
two-dimensional system, so we will only mention the essen-
tial features here. The initial condition to start the calcula-
tion is that H(M,, Ny, Lo) = 1. All the H(M, N, L) with
(M, N, L) # (M, Ny, L) are then calculated sequentially
from the relation

H(M,N, L)

20
=W(M,N,L)[a(2M + 2N + 2L + 3) — E]‘l.( )
The energy estimate is revised using the relation (20) for
the special case M = My, N = Ny, L = L. The coefficient
on the left-hand side becomes H(M,, Ny, Lo) = 1. The
revised energy E, thus takes the form

Ee = 0[(2M0 + 2N0 + 2L0 + 3) - W(Mo, N(), Lo), (21)

but it is sometimes useful to set the revised energy equal to

E:=RE,+ (1 — R)E. (22)
The upper values of M, N, and L can then be increased
and the calculation repeated until eventually the energy is
unaffected by further increases in the upper limits. The
upper limit in our calculation is (M, N, L = Q = 60). The
indices have the ranges

M=0, 1,2,...,0
(fixed M) N=0,1,2,..,0
(fixed M,N) L=0,1,2,..,0.

We should point out that Aitken’s transformation has
been used in order to increase the accuracy of our results
and to accelerate the rate of convergence of our calcula-
tions.

If S, S,.+1, S,.+2 are three successive partial sums, then
an improved estimate is

[Sn+1 - Sn]2
[Sie2 = 28,01 + S,]

S—S_[A_S”F—S_
n— Yn AQSn_n

(23)

The relation (23) has been used to improve the conver-
gence of the calculations and it has helped in improving
the accuracy of our listed results in Tables II-IV.

3. RESULTS AND DISCUSSION

The Hill determinant approach has been applied in this
paper for double-well potentials in one-, two-, and three-
dimensional systems. Eigenvalues for different values of
Z3,7Z%, 7%, X and state numbers n,, n,, n, are listed in
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TABLE I

Eigenvalues of Double-Well Potential V(x; Z2, ) in
One-Dimensional System for Several Eigenstates E,,_

A (22 |n A |28 |In
X X nx X X nx
0 | 0.22045007237212990 0| =9.44697938474047282
1| 2.08829711228774814 1| -9.44562992836759352
2 | 5.62389615392606140 2 | -3.92153584540274875
3| 9.72354566419132632 3 | -3.82087184715860094
4 | 14.39139659979008485 4 | -0.013440475443563822
1.5(2.5] 5 | 19.51362309099289354[0.5[5 | 5 1.26982440213957438
6 | 25.02861634686618382 6 4.03764550800769142
7 | 30.89114878246567112 7 6.82884818044587082
8 | 37.06704939163747326 8 | 10.00060195322818555
9 | 43.52941805968745698 9 | 13.41852031318033341
10 | 50.25638499717388311 10 | 17.06745128572262872
T 5 [0 | -3-41014276123982947], I [0 | -32.12731109560843087
1 || -3.25067536228923598 1 | -32.12730965785149255
0 | -8.67110520870420392 0 | =37.42980397877276239
L 1o It | -8 ec2as220a8814021) |11 | -37.42977455459924215
2 | -2.54370520944282011 2 | -23.07960104597809075
3 || -2.11199938221839442 3 | -23.07557051062457585
0 | =20.6335767029477978 0 | -52.71004958047889083
1 | -20.6335468844049111 1 | -52.71003734557578916
L lio |2 | -12.3795437860133029| | o1 2 | -34.06321714036207558
3 | -12.3756737207056088 3 | -34.06136510710378522
4 | - 5.1328379618083858 4 | -17.18959999695144949
5 || - 4.9648702736154361 5 | -17.08707679490634021
0 |-149.2194561421908880 0 [-152.67831399909375039
1 |-149.2194561421908880 1 |-152.67831399908422182
2 |-135.3245120118408585 2 |-125.34750268688988602
3 |-135.3245120118408585 3 |-125.34750268374595331
4 [-121.6889506046216482 4 | -99.06981141974534621
5 ||-121.6889506046216482 5 | -99.06981095815446581
6 |-108.3280005673323098 6 | -73.99094721834865005
7 ||-108.3280005673323095(15 [100]7 | -73.99090790696433191
8 | -95.2594596790828367 8 | -50.32666184267079224
9 | -95.2594596790827942 9 | -50.32455290733653391
10 | -82.5044783545121920 10 | -28.47311816811351423
11 | -82.5044783545078108 11 | -28.40195685097769502
12 | -70.0887175312348478 12 | -9.786565003304405272
1 los [13 | -70.0887175308864379 13 | -8.499038201171381747
14 | -46.4120052267605372 14 | 3.909866057170036320
15 | -46.4120041514654285 15 || 10.487120796491774223
16 | -35.2481845729541083 0 |-207.84995144001516478
17 || -35.2481426274132394 1 [-207.84995144001467077
18 | -24.6346811128178588 2 [-174.26220711947673746
19 | -24.6334095751947276 |, |, 13 |-174.26220711929462638
20 | -14.7187209354534184 4 |-141.82502963460632511
21 | -14.6899524306534688 5 |-141.82502960432026387
22 | -5.96094160730292782 6 [-110.67561242225776129
23 | -5.53431701894807894 7 |-110.67560944362467167
24 | 0.66664797113207376 8 | -81.00467144058689638
25 | 3.12172458243026284 9 || -81.00448130057817149
5 | =57.8785897718172453 10 | -53.10576879765972895
1 | -57.8785892839732776 11 | -53.09769656468204332
6 lao 12 | -40.9815029067163091 12 | -27.59953293185809928
3 | -40.9814099973164893 13 | -27.38079541051527492
4 | -25.2783905204222451 14 | -6.81834970253106402
5 | -25.2713380978603976 15 | -3.9377934650880259
6 | -11.2953528322733256 16 9.55913004229917353
7 | -11.0447433717424087 17 | 19.22042655903009186

Tables I-VI. Eigenvalues of such potentials in two- and
three-dimensional systems are computed for the first time
in this work.

In Table I the values of the energy are calculated over
a wide range of 2.5 = Z2 = 150 and 0.5 = A =< 25 for the
case of one-dimensional systems, for several eigenstates
with even parity and odd parity. It is clear from our listed
results in Table I that the Hill determinant approach pro-
duces high accuracy despite the large values of A, Z2, and
state number n,. The computations were carried out to
double-precision (20 digits) by using a humus system with
Fortran (77) programs.
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TABLE II

Eigenvalues of Double-Well Potential V(x,y; Z2, Z2, 1) in
Two-Dimensional System for Several Eigenstates E, ,

a =a =l,a

XX yy

=1
xy

>

E
y 0,0

E E

0,1 1,1

U

.61424019660
. 36573363781
1.10025839746) 4.
-4.98397929548
~29.83196949
-30.463174803
-20.69255783668
-50.8775172003
-93.7526635
.20074097557|| 8.
.91890696042| 9.
.49018305786
.04180811591
20 11.68043864796
14.01383918430
14.69516952806
120( 15.58742224626| 41
43.44462308468(104.
102.41718804995(239.
230.39079493043|(533.
228.57857525990][529.

E
73535914112 4.
4
4

Ut
a0 G N
e

N m b e =N e e O
[
- =
N o

N =
oo
()]
n

N

w

w

100
200
400
5090
10° 1100
10_}200
10° |400
10_|500
107|800

L
(2

10168392312
.49111439039
29273502103
04810630068
. 5079641499
.1296023

. 14582047

. 4574196849
. 733091622
.647517
02716125152 7.
98587120087( 9.
.10941723234
.22034136732
.32740242124
.59801844338
.53932044892
35189146432
80661454407
94712297751
06550866858
80163820655

. 02878704179
. 85624689529
. 69868982791
. 48052037731
. 76561922859
-29.831935741
-30.463121839
-20.4574196849
-50.733091622
-93.647517 -93.33247428
67047026747| 13.418326341740
41475123995| 16.655374974567
70649046965| 30.242788015342
57154094623| 37.211032187856
81666229465| 47.531226675278
77421454989| 58.304598185255
76807014538| 61.909780228296
06692428309| 71.582780162997
42469503214|176.04031655506
70479396810(399.54968738466
64757871875(883.23740723179
66379000057 879.01029290318

6.794064109085
7.298367378617
7.327246077684
7.243850857804
-2.66915135597
—-27.1285681307
-27.14442750
-19.76428002530
-50.3012984043

I
W W W

17.
21.
27.
33.
35.
40.
103.
238.
531.
528.

a =a

XX Yy

=l,a =0
xy

>

E
y 0,0 1,0

0,1 1,1

|

. 54277696351
. 28672371395
. 89722227782
.48784116273
~-9.15833328191
-51.821426429
-51.3617221075
-20.6748441544
-41.2671534059
-101.68277457
2.5 2.71313903038 6.
4.5 3.28728769291 8.
7.5| 6.52382608356(| 15.
15 7.76972817142( 19.
10.11809317560| 24.
40 11.94612789385| 29.
50 12.40879315446| 31
120| 12.22807537841{ 33.
37.74551873112) 91.
S00| 91.26949645958)213.
207.51880809728(478.
205.49861617278]/475.

w
D W m

g N
O O =

-8.
-51.
-51.
-20.
-41.

(3 I s B e =
w
= e
N o

(3
o o
o N

w1

100410
200115
400
500
10
10
10° ||400
10500
107|800

o o o

64852603400
75048552546
29180176470
79918890715 2.
99886588296
8213966103
361531115

671147346

267123587

-101.68277457

91360663984 6.
54843231401 8.
87168943395| 1S.
29895353602 18.
72775578888
88075887479
3577635953
9969073478

6609991908
7302332201

7462390699
0983276177

3.57916045652] 5.684909527010
3.16648902736( S5.630250838881
2.76506031773 5.159639804619
31413494170| 4.625482686126
11693527841| -8.95746787945
-51.821426079 -51.821396259
-51.361720669 -51.36152967
-20.671147346 -20.66745053753
-41.267123587 -41.2670937688
-101.68277457(|-101.68277457
S7975757558| 10.780225185045
01561749450) 13.2767621156
49114157403} 24.8390049244
68900649207| 30.2182318566
24629523816( 38.85595785144
10832025726 47.042951238208
63677163919| 49.5857420801
81963215572| 54.5884641251
35696494209|144.272445402
212.54700375903|335. 007740519
477.39009393699748.617524909
474.01087832324]743. 610589768

-9.

24.
29.
30.
32.
90.

In order to illustrate the effect of increases of the state
number 7, on degeneracy of energy levels at given values
of A and Z2, we calculated many eigenvalues. For example,
at A = 1 and Z2 = 25, 26 energy levels are calculated. It is
clear that as n, increases the splitting | Ecyen — Eoqa] = AE
increases also.

Some important consequences have come from our in-
vestigations for double-well potentials in one-dimensional
systems: If Z2 increases, the energy levels for states of even
and odd parities become effectively degenerate, i.e.,
Eeven = Eoaq, for instance; the corresponding energies of
these states at Z> = 25, A = 1 are E, = E, =
—149.219456142190880. Similar considerations hold for
other higher values of Z2, as is clear from listed results in
Table I and this confirmed the results conjectured by the
works [1-11] for the case of double-well potentials in one-
dimensional systems.

In Table II the values of the energy are calculated over
a wide range of 0.1 = Z2,Z2 < 10°, and 0.5 = A = 10° for
the double-well potential V,(x, y; Z3, Z;, A) in two dimen-
sions for two cases a,, = a,, = a,, = 1 and a,, = a,, = 1,
a,, = 0 for four eigenstates Ey, E£11, Eyg, and Ey.

When the potential V,(x,y; Z2, Z2, A) is separable, i.e.,
ay, = 0, the total energy E,, ,, of a state is the sum of two
components £, = E, + E,. But when a,, # 0 the potential
is nonseparable and the total energy of a state is the sum
of the three components E, = E, + E, + E,,. When the
system is separable it is clear that the splitting A E vanishes
for higher values of Z2, ZZ, in contrast to the nonseparable
system, and this is clear from our listed results.

As a general remark, we note the degree of accuracy
(i.e., the number of digits) in the eigenvalues that we have
been able to obtain by our approach appears to diminish
slowly with the increase in the values of ZZ, Z3 at the given

Yy
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values of A. Also the accuracy possible is usually greater
for larger values of A than for smaller values of A, at the
same values of Z2, Z2.

It is interesting to note that the energy levels character-
ized by (n,, n,) with n, and n, having different parity, i.e.,
odd-even or even—odd, remain doubly degenerate and
unsplit when the double well potential has exchange sym-
metry but for the unsymmetrical case the double energy
level splits into two different separate levels. The energy
levels showing such behaviour are Ey; and Ejy, and this is
clear from the listed results in Table II.

Accurate eigenvalues were obtained in all ranges of
perturbation parameters for the potential V,(x, y;
Z3, Z3, A). The results agreed with those (when available)
from other works [1-11]. For the special case
Z:=27;=27% a,. = a, = 1, a,, = 0, the potential (3)
reduces to the two independent double-well potentials.

The energy eigenvalues for the three-dimensional sys-
tem Vs(x,y,z; Z3, Z3, Z2, M) are calculated, and their en-
ergy eigenvalues are quoted in Table IV, for several eigen-
states and various values of Z%, Z2, Z% and A.

In Tables IIT and IV emphasis is specially placed on the
larger values for the case Z3 = Z; = Z2 = Z?* because the
eigenvalues for different states Eoy, E100, Eo10, Eo11,> E110,
Ei01, E111 have almost degenerate eigenvalues. As Z? in-
creases, the magnitude of the splitting between these levels
decreases, i.e., E]]] - E000| = |E]]0 - E100| =AE = 0, as

is clear from listed results in Tables III and IV and this
confirmed the results conjectured by the works [1-11] for
the case of the double-well potential in one dimension.

When the potential V3(x,y, z; Z%2, Z%, Z2, A) is separa-
ble, i.e., a,, = a,, = a,, = 0, the total energy E, .. of a
state is the sum of three components E, = E, + E, + E_.
But when a,, = a,, = a,, 7 0 the potential is nonseparable
and the total energy of a state is the sum of six components
E=E+FE +FE, +FE,+ E,+ E,. When the system
is separable, it is clear that the splitting AE vanishes for
higher values of Z%, Z;,Z2, in contrast to nonseparable
system, and this clear from our listed results.

It should be pointed out that the energy levels character-
ized by eigenstates \1’100, \Ir(n(), \IIOOI and \1’110, \1’011, \1’101
remain triply degenerate and unsplit for the double-well
potential with symmetrical behaviour as A is varied from
the value of zero. This means that the perturbation does
not break the degeneracy of the perturbed system, but for
the case of unsymmetrical double-well potentials the triplet
degenerate levels split into three, and this is confirmed by
our results in Tables IIT and IV.

We have plotted the variation of the first few energy
levels in Figs. 3—6 as function of Z2 to display the degener-
acy of energy levels for our results in the Tables II-IV for
the double well potential in two- and three-dimensional
systems for the symmetrical case of the energy levels Eq,
E]O, E]] and Eooo, E1007 E]]O, E]]] for different values of

TABLE III

Eigenvalues of Double-Well Potential V(x, y, z; Z%,Z3,Z%,)) in
Three-Dimensional System for Several Eigenstates E,,X,nv.nz, for the

Case a,, = ayy, = a;; = Ay = Ay, = ay; = 1
A (2% |22 |22 E E E E
x y z 0,0,0 1,0,0 0,1,0 0,0,1

0.50.1]|0.2]0. 3] 2. 7827992267501 5. 3685338354291 5.299821775265. 22975043061
0.5) 0 [0.4f0 | 2.770318719513}5.42713073659 | 5.00216309799|5.42713073659
1.500.5(1.502 | 3.19734167311 |6.89575498784 | 6.39486141405|6.12378760059
1 | o0f2 Jo | 2.5653123469 [6.08182958128 | 4.160368401716.08182958127
1 | 2[a |6 [-2.67383926 0.92990283 -0.34274002784/ -2. 4253434496
1 [ ofs |o [-1.08165433232 |3.501975779 -0.9411507857 [3.501975783

1 [15 |15 |15 |-50.84138728  [-50.55290971  |-50.55290971 |[-50.55290971
1 |20 |20 |20 [-93.7263709 -93.5161789 -93.5161789  [-93.5161789

50_[[4 |8 |16 [ 11.55954962921]23.464392285554(22.86231111487|21.5859637258

i 5 10 15 15.6197857129 30.63723857

2 20 (40 |60 34.27260600974| 66.72376925785(65.62665610429( 64.501750817
105 50 (75 |100| 78.6868350736 ||149.09208894

6 100}200 309 172.4521647994 |(325.32572406

2 2505001107 1374.68114631674(704.82321601527|703. 4853626709|700. 797750693

30.04363488 29.43235907

148.46513705 (147.83410874
324.169159946 |323.00619023

102|500 10°| 10| 342. 87770738580 675 . 68133437335]673. 0127649054 | 622 . 016518347
I Al il il B E E E
X v z 0,1,1 1,0,1 1,1,0 1,1,1

0.5]0.1]0.2][0.3]8. 1048349028977 |8, 1674025449811[8. 231227813162 11. 3207903727
0.5l0 [0.4| o [8.023566759879 |8.410685440812 |8. 023566759879 11.3045532269
1.500.5]1.5[2 [9.92052973264 [10.37018913604 |10.6139363103214.5724836294
1 fo {2 | o [8.20915289337 [9.94053727485 |8.20915289337 |12.5153832032
1 |2 |a || 6 |0.4239965828 |[1.527046205 3.351486825 | 4.55341104

1 15 |15 |15 |-49.97887929  |-49.97887929  |-49.97887929 |[-49.12482824
1 |20 20 [20 |-93.0965841 -93.0965841 -93.0965841 | -92.4691335
504 [8 |16 |34.68230678074 | 35.2265013113| 36.381373687| 49.59461199
10215 |10 [15 | 46.009176836 | * 46.5482042643| 47.103550794|64.7586425039
10°]20 40 |60 | 100.4380473191| 101.4355073920| 102.458655448| 140.88591552
10%[50 |75 |100| 227.024464662 | 227.596990012 | 228.17329389 | 314.33293385
102 100|200{30g| 494.80143445 | 495.85885273 | 496.92221416 | 683.81397538
10%]250| 500|107 |1072. 6030895918 | 1073. 8269796306 | 1076. 285808337 | 1480. 34788565

107|500

998.5727443477

1000. 9984377559

1047.399135135

1410.53324073
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TABLE IV

Eigenvalues of Double-Well Potential V(x, y, z; Z2,Z3,Z%,)) in
Three-Dimensional System for Several Eigenstates En,‘,n,,n. ,for the Case
= = 1’ Ayy = Qyxz = Ay = 0

vy
A |22 |22 |22 E
x y y 0,0,0 1,0,0 0,1,0 0,0,1
0.5]0. 1[0.2]0.3|2. 2408571315938 4. 346606202035 |[4.277240625013] 4. 20695421379
1.50.5[1.5)2.5]1.94680237642 |4.843006792815 |4.341381883032|3.81464045247
1.5[a |5 | 6 |-5.40488058 -4.327837 -4.783406 -5.107749
2 |6 |8 |10 [-14.458991387 |-13.7541496574 |-14.267608029 |-14.42566512
1 |15 15 {15 [-152.524161853 |-152.524161852 |-152.524161852|-152.52416185
1 [20 [20 J20 |-281.179112753 |-281.179112753 |-281.179112753|-281.17911275
1025 |10 |15 | 12.2925753312 | 24.42032606563| 23.821800689 | 23.21185364
10320 |20 {60 | 27.2569441109 | 53.56167945482| 52.454864648 | 51.329698146
101 0 75 |100| 65.53822945738|124.55489455  |122.66355744 | 122.0273496
102[50 |75 J100| 64.6892793 122.4479325 121.8146075  |121.1783997
10°| o [200]300[143. 7074491 270. 8549997 268.5208068  |267.3468018
10° 100 150| 300( 143. 3201497 269.3029046 268.7187815 | 266.9595023
10 o |s09 102 312.6345561 586.565650 583.8619873  |581.1468185
10| o 110”107 274.1824538977 |548.113547 542.694715 491.87077366
10° 750900 10°|308. 43201727621 | 578. 30330304805 || 577 . 4882343745576 . 944279558
2 2 2
A Zx v zy EO,l,l El,O,l El,l,O Ei,l,l
0.5(0.1]0.2][0.3]6. 243337707534 ||6. 312703284864 |6, 38298969406 |8, 3490867541
1.500.5(1.5]2.5[6.20921995312  [6.71084486935 |7.23758629991 |9.10542436999
1.504 {5 | 6 [-4.4862778 -4.0307065 -4.4862778 -3.409234418
2 e |8 |10 |-14.234289 -13.720828 -13.56276628 | -13.5294444
1 |15 [15 |15 [-152.52416185 |[-152.52416185 |[-152.52416185 |-152.52416185
1 |20 [20 |20 [-281.17911275 |[-281.17911275 |[-281.17911275 |-281.17911275
1025 |10 {15 | 34.741079028 | 35.3396044 35.949551 146.8688297
10320 |40 |60 | 76.527618654 | 77.6344334656 | 78.7595999584| 102.83235398
107]0 |75 }100179.1526779 181.044014 181.680222 238.169342
10}[50 |75 |100|178.3037278 178.9370528 179.5732606 236. 0623809
10°Jo  |200300}392.160159 394.4943523 395. 668356 519.3077099
102} 100| 150| 309| 143.3201497 392. 9422581 394.7015372 518.3408903
10810 |00 107 |852. 3742497 855.0779127 857.7930815  ||1126.3053438
10°] 750 900[ 10° | 846. 00049660573 |846 . 8155652763 |847.3595201926(1115. 87178229
10°Jo | 10°]10%]|760.383035959 | 765.8018675503 |816.6258098755]1034. 31412965

Z?2. We can observe in Figs. 3—6 that the energy levels are
degenerate for higher values of Z2.

Itis important to point out that the adjustable parameter
« has played an important role in the convergence of our
calculations. The best « values in this calculation have been
obtained by numerical search, so our calculation reveals
the importance of finding the best values of the adjustable
parameter «. The general consideration governing our

200 +

choice is that, as A increases, the value of « increases.
Table VI compares some samples of the convergence of
our results for various values of an adjustable parameter
« for the states ¥y, and Wy.

When Z?% = Z% = Z% = Z? and for large values of Z* with
small values of A, the convergence rate of our algorithm
for the calculation of energy levels is improved if we ap-
plied the scaling (x; — ax;) to the Schrodinger equation

o

Energy

-300 —

FIG. 3.

Graph of three energy levels E,,, for the potential V,(x, y; Z2, Z2, A = 1) for different values of Z? (Z% = Z} = Z?) for the case a,, =

a,, = 1, a,, = 0. For small values of Z2, the positive energies are small; then it is necessary to multiply these energies by a factor of 30 in order to

obtain a clear figure.
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TABLE V

Comparison of Some Eigenvalues Which Have Been Cal-
culated by the Hill Determinant Approach with Those Cor-
responding Calculations Available in the Literature for
One- and Three-Dimensional Systems

Zi Aln EnX Other works & Ref.[no.]
11 [9) 0.65765300518071512305 ﬁTE37g3366§T§67T§____—_____T;T
1 2.83453620211930421465]2.83453620211930S
15]1 0 -50.84138728438195436625(-50.8413872844 (3]
1 -50.84138728418700515471 | -50.8413872842
5001 0 [-615.02009090275781656621]-615.02009090275781656622 5]
1 [|-615.02009090275781656501 |-615.02009090275781656501
22=22=22=22, a =a =a =l;a =a =a =0
x y oz xx yy zz Xy Xz vz
Z2IA {n|n|n B nn Other Works& Ref.  [no]
x y z x 'y z
[s] 0 0 2.6100525551148 2.610052555114836
0.5l 1 1 0 0 5.0738143666302 5.073814366630231 [4]
’ 1 1 0 7.5375761781456 7.537576178145625
1 1 1 10.0013379896622 10.001337989661019
4] [¢] 0 -10.230428283777 —-10.23042828371949
5 1 1 0 0 ~-10.070960884548 -10.07096088476889 (51
1 1 o] -9.911493485618 ~9.91149348581830
1 1 1 -9.752026086957 —-9.75202608686771
0 0 0 -61.90073010 -61.90073010884310
10 11 1 0 0 -61.9007003 -61.90070029029515 [71
1 1 0 -61.9006704 ~-61.90067047174719
1 1 1 ~-61.9006406 -61.90064065319925

(2) it follows that the potentials take the following form:

in one dimension,

Vi(x; B) = —x* + Bx* (24)

in two dimensions,

Va(x, yi B) = —(* + y?) + Blaux® + 2a,x%y* + a,y*];
(25)

TABLE VI

Convergence for Some Eigenvalues for E,, ,,,. of Double-
Well Potential V(x,y, z; Z2,Z3%,72, A) for the Case a,, = a,, =
a,, = ay, = a,, = a,, = 1 for Several Sets of Parameters
Z3%,7%, 7%, and A, for Various Values of Adjustable Parameter c.

2 2 2
A Zx Zy Zz Eooo E111 3
z
2.2748 11.64 3
1 [t [1.502 [2.2748608086922 | 11.647929865569 |4
2.2748608046 11.647929866 6
5
7.3196074892564 |30.211321634816 |10
1041 12 13 17 3196074 30.211322 15
7.32 J30.21 20
20
30.84701 133.38 30
10|50 |75 |100(30. 847015696039 [133.38383535060 [ 40
30. 8470156960 133. 383835350 50
200
375. 1482, 260
s 375.44434786 1482.07203 360
1074001500600} 375" 44434786480 | 1482.0720390537 | 420
375. 44434786 148207203905 460

Note. The empty spaces mean the eigenvalues cannot be obtained with
these values of a.
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4 4.5 5 75 { 15 0 25
0 2
z N
100 N
150 \
FIG. 4. Graph of three energy levels E,.,, for the potential

Va(x,y; 22,22, A = 1) for different values of Z* (2% = Z% = Z?) for the
case a,, = a,, = 1, a,, = 1. For small values of 7?2, the positive energies
are small; then it is necessary to multiply these energies by a factor of
30, in order to obtain a clear figure.

and in three dimensions,

Vi(x,y,z;8) = —(¥* + y* + 2°) + Blanx* + ayy* 26)
+ a2t + 2a,x°y* + 2a,.x°2* + 2a,.y°7?],

where 8 = Z 73\ and the energy E(Z? \) = ZE(1, B).
Comparison with the results of other methods has been
made in Table V for the double-well potential in one and
three dimensions, for various values of Z2, A, and several
sets of eigenfunctions. The first comparison was made with
numerical results for the one dimensional system. It is clear
from Table IV that there is agreement between our results
and the previously published results of Balsa et al. [3],
Hodgson and Varshni [5], and Saavedra and Buendia [7]
up to 12, 21, 16 decimal places, respectively. The second
comparison, in three dimensions is for the case a,,

Energy

FIG. 5. Graph of four energy levels E,,,,,. for the potential
Vi(x,y,z; 2%, Z%, 2%, = 1) for different values of Z* (Z3=Zi=Zi=
Z?) for the case a,, = a,, = a,, = 1, a,, = a,;, = a,, = 1. For small
values of Z?, the positive energies are small; then it is necessary to multiply
the energies by a factor of 20, in order to obtain a clear figure.
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g & 8

FIG. 6. Graph of four energy levels E,,,,,. for the potential
Vi(x,y,2; 22,72, 722, 2 = 1) for different values of Z* (Z:=Z2i=Z7%=
Z?) for the case a,, = a,, = a,, = 1, a,, = a,, = a,, = 0. For small
values of Z2, the positive energies are small; then it is necessary to multiply
the energies by a factor of 20, in order to obtain a clear figure.

a,, = a,, =1, a,, = a,, = a,, = 0; with other workers
results [4, 5, 7]. At higher values of Z> = 10, at A = 1, it
was found that the Hill determinant approach faced greater
convergence difficulties in the three-dimensional case.
Such comparison shows that the present technique is highly
accurate. Higher accuracies still can be achieved at the
expense of greater computation times.
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