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Energy levels for double-well potentials in one-, two-, and three-
dimensional systems are calculated using the Hill determinant ap-
proach for several eigenstates and large values of the perturbation
parameters (l, Z 2

x , Z 2
y , Z 2

z). Numerical results for some special cases
agree with those of previous workers where available. Q 1996 Aca-

demic Press, Inc.

1. INTRODUCTION

The double-well potential for one-dimensional quantum
systems [1–11] has been the subject of numerous investiga-
tions, and the corresponding literature is consequently,
quite extensive. Although various aspects of the problem
have been the subject of much interesting work, both from
the analytical and the numerical point of view, com-
parable investigations have not been carried out in the
case of multidimensional systems [12].

There is a large number of physical and chemical systems
whose properties can be studied (modelled), assuming that
the potential function responsible for such properties is
well represented by means of a function with two valleys
and a barrier between them.

Examples of such potentials occur in the study of the
infrared spectra of the NH3 molecule, infrared and Raman
spectra of hydrogen-bonded systems, inversion characteris-
tics of isomers, structural phase transitions, formation of
noble-gas monolayers on a graphite substrate, macroscopic
quantum coherence in super-conducting Josephson de-
vices, and so on [13–14]. In the theory of these problems,
the most important characteristics are related to the sepa-
ration between the two lowest-lying energy levels as it
defines the tunnelling rate through the double-well barrier.

In this work, the general form of Schrödinger equation
for the double-well potential in several dimensions system
can be written as

F2Od
I51

­2

­x2
I

1 Vd(xI , ...; Z2
xI

, ..., l)GF(xI , ...) 5 EF(xI , ...)

(1)
(x1 5 x, x2 5 y, x3 5 z).

Here, and subsequently, all the indices run over 1, 2, 3, so
that the coordinate xI runs over x, y, and z. The notation
d 5 1, 2, or 3 refers to the number of dimensions, l is a
positive perturbation parameter, and Z2

x , Z2
y , Z2

z refer to
the depth of the potential well.

The solution of the Schrödinger equation for a nonsym-
metric double well in two and three dimensions has not
received the attention it deserves. This is unfortunate be-
cause there have been misconceptions in the literature
regarding the effect of two unequal minima in potential
functions on the infrared and Raman spectra of hydrogen-
bonded systems [13].

In the present paper, the Hill determinant approach is
applied to three examples: the double-well potential in
one dimension,

V1(x; Z2
x , l) 5 2Z2

xx2 1 lx4 (2)

in two-dimensions,

V2(x, y; Z2
x , Z2

y , l) 5 2Z2
xx2 2 Z2

yy2

(3)
1 l[axxx4 1 2axy x2y2 1 ayyy4],

and in three-dimensions,

V3(x, y, z; Z2
x , Z2

y , Z2
z , l)

5 2Z2
xx2 2 Z2

yy2 2 Z2
zz2 1 l[axxx4 1 ayyy4 1 azzz4 (4)

1 2axy x2y2 1 2axzx2z2 1 2ayzy2z2].

The potentials V1(x; Z2
x , l), V2(x, y; Z2

x , Z2
y , l), and

V3(x, y, z; Z2
x , Z2

y , Z2
z , l) consist of two potential wells sep-

arated by a barrier. If the barrier were impenetrable to a
particle, there would be energy levels corresponding to the
motion of the particle in one or the other well, the same
for both wells. The fact that a passage through the barrier
is possible results in the splitting of each of these levels
into two neighboring ones, corresponding to states in which
the particle moves simultaneously in both wells.

The depth of the double well is controlled by the parame-
ters Z2

x , Z2
y , Z2

z , and l (see Figs. 1, 2). The Hill determinant
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approach works well for small and medium values of
Z2

x , Z2
y , Z2

z at low values of l; as Z2
x , Z2

y , and Z2
z increase

the depth of the well increases and for a deep well the
convergence decreases.

Physically, when the potential well is very deep (for
large Z2

x , Z2
y , Z2

z values) the classical turning points for the
lowest bound states are very close to the minimum of each
well; therefore the particle, even quantum mechanically,
can in the main see only the region of the potential near
the minima. The lower levels for this potential have there-
fore very nearly degenerate eigenvalues.

When Z2
x 5 Z2

y 5 Z2
z 5 Z2, the potentials in two and

three dimensions have rotation symmetry, which makes it
easier to handle the calculations. We should comment here
that handling potential functions with symmetric behaviour
is preferable, because it is simpler and their computation

FIG. 1. a. Double-well potential V1(x; Z2
x 5 10, l 5 1); b. Double-well

potential V1(x; Z2
x 5 1000, l 5 1).

is more quickly performed than nonsymmetric behaviour
and requires less memory.

The eigenvalue spectrum of the Schrödinger equation
(1) with Vd(xI , ...; Z2

xI
, ..., l) has the feature that the lower

eigenvalues are closely bunched in one group if the values
of the Z’s are sufficiently large. As Z2

x , Z2
y , and Z2

z increase,
the magnitude of the splitting between these levels de-
creases; i.e.,

uE1 2 E0u 5 DEd51 > 0 (5)

uE11 2 E00u P uE11 2 E10u 5 DEd52 > 0 (6)

uE111 2 E000u P uE000 2 E100u P uE100 2 E110u 5 DEd53 > 0.
(7)

The splitting DE will be small at the bottom of the well
and will increase as the levels approach the top of the
barrier. When DEd has its minimum value, the nearly de-
generate eigenfunctions have equal weight in each poten-
tial well.

The double-well potential given by Eq. (1) in two and
three dimensions is, in general, nonseparable in Cartesian
coordinates, showing nonsymmetrical behaviour and, due
to this behaviour, requires a great deal of computation to
arrive at our results.

The paper is organized as follows. Section one is con-
cerned with the Hill determinant approach and its use
to calculate the energy eigenvalues for the double-well
potentials in one, two, and three dimensions for several
eigenstates. Section 4 contains a discussion of the results.

2. THE HILL DETERMINANT APPROACH

The Hill determinant approach is a nonperturbative
technique used to treat the perturbed oscillator problem
in one, two, and three dimensions. Much of the traditional
literature on Hill determinants deals with one-dimensional
problems [15–31]; the extension to two or three dimensions
necessarily involves the use of a product basis set, leading
to large matrix or determinant problems, which are conve-
niently handled by a relaxation method.

However, despite the success of the Hill determinant
approach in calculating energy eigenvalues there has been
some theoretical debate [18, 19] about the question of
whether it can give ‘‘false’’ eigenvalues which do not corre-
spond to normalizable wavefunctions. The difficulties orig-
inally encountered by Flessa [18, 19] in connection with
application of the Hill determinant approach were investi-
gated by several workers [20–25], leading to some conclu-
sions about the conditions of applicability of the approach.
For example, Chaudhuri [20] treated anharmonic oscilla-
tors of the type (ax2 1 bx4 1 cx6) and showed that, with
a particular choice of convergence factor of the form
exp(2ax4 1 bx6), the algebraic of Hill determinant mayFIG. 2. Double-well potential V2(x, y; Z2

x 5 Z2
y 5 7.5, l 5 1).
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lead to incorrect eigenvalues; however, Hautot [21], in
turn, claimed that the use of this factor with variable b
removes this inconsistency (see also [24, 27]).

2.1. The Double-Well Potential V(X; Z2
x , l) in One

Dimension and the Corresponding Recurrence Relation

The double-well potential V1(x; Z2
x , l) has two minima

at x 5 7xm ; Z/Ï2l and one local maximum at x 5 0.
When Z2

x is large, the potential minimum occurs at large
value of x, so that the wave function centered at xm does
not penetrate too much through the barrier separating the
two wells. The probability of finding the particle is locally
maximal at x 5 6xm . Its low energy levels should involve
wave functions which present a maximal probability den-
sity at a position close to the minimum of the two-well
potential. In the case of very deep wells where the tunnel-
ing is very small our estimate uEeven 2 Eoddu for the splitting
DE is generally too small.

To calculate the energy levels of the Schrödinger equa-
tion, we introduce a wavefunction which has the form

Cnx
(x) 5 expS2

a
2

x2DO H(M)(x2M). (8)

Substituting this wavefunction into the Schrödinger equa-
tion (1) leads to the following four-term difference
equation:

(2M 1 1)(2M 1 2)H(M 1 1) 2 [4aM 1 a 2 E]H(M)
(9)

1 (a2 1 Z2
x)H(M 2 1) 2 lH(M 2 2) 5 0.

We can either take H(0) 5 1, with all the M’s even to get
an even solution, or take H(1), with all the M’s odd to get
an odd solution.

The condition that a nontrivial solution for the H(M)
exist is given by the vanishing of the following infinite de-
terminant:

D 5

E 2 a 2 0 0 . . . . .

a2 1 Z2
x E 2 5a 12 0 . . . . .

2l a2 1 Z2
x E 2 9a 30 . . . . .

0 2l a2 1 Z2
x E 2 13a 56 . . . .

0 0 2l a2 1 Z2
x E 2 17a 90 . . .

0 0 0 2l a2 1 Z2
x E 2 21a 132 . .

. . . . . . . . .

. . . . 2l a2 1 Z2
x . E 2 4aM 2 a 2(M 1 1)(2M 1 1)

.

By using the rules for expanding a determinant and work-
ing up the last column, which has only two nonzero ele-
ments, we obtain the following recurrence relation for the
determinant D(M), obtained by truncating the matrix after
(M 1 1) rows and columns:

D(M) 5 [E 2 4aM 2 a]D(M 2 1)

1 M(M 2 As)(a2 1 Z2
x)D(M 2 2) (10)

2 16lM(M 2 As)(M 2 1)(M 2 Ds)D(M 2 3),

where we can use the starting condition D(21) 5 1,
D(0) 5 E 2 a, at M 5 1. D(1), D(2), and so on can
then be calculated for any assigned E value. If we use the
estimates Ee and E2 5 Ee 1 DE, with DE small, then for
each M the values of DEe

(M) and DE2
(M) will give a pre-

dicted energy E at which DE(M) would be zero. We can
find several roots for a particular M and we can also follow
a particular root as M increases to see whether it tends to
limit which is stable to some number of significant figures.

2.2. The Double-Well Potential in Two-Dimensions and
the Recurrence Relation

The Hill determinant approach is a very powerful tech-
nique for calculating eigenvalues in two-dimensional prob-
lems. In the present paper we extend the Hill determinant
approach to double-well potentials with equal depth
Z2

x and Z2
y (which allows us to deal with the symmetric

double-well potential) with its nearly triple degenerate en-
ergy levels (E00 , E11 , E10). We also treat the case of high
central barrier and unequal depth Z2

x and Z2
y (which allows

us to deal with the very asymmetric double-well poten-
tials). In order to get a clearer picture, we plot the double-
well potential V2(x, y; Z2

x , Z2
y , l) for different values of
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Z2
x , Z2

y , l. When Z2
x and Z2

y are large, the potential mini-
mum occurs at large values of Z2

x and Z2
y , so that the wave

function centered at xm and ym does not penetrate too
much through the central barrier; obviously this is not the
case for small values of Z2

x and Z2
y .

To begin our analysis, we take the wavefunction describ-
ing this system in the form:

Cnx,ny(x, y) 5 expS2
a
2

(x2 1 y2)G
(11)

O
M,n

H(M, N)(xMyN).

The next step is to substitute Cnx,ny(x, y) into the Schrö-
dinger equation (1), and after some algebra, we obtain the
recurrence relation

[2a(M 1 N 1 1) 2 E]H(M, N) 5 W(M, N), (12)

with

W(M, N) 5 (M 1 2)(M 1 1)H(M 1 2, N)

1 (N 1 2)(N 1 1)H(M, N 1 2)

1 (a2 1 Z2
x)H(M 2 2, N) (13)

1 (a2 1 Z2
y)H(M, N 2 2) 2 l[axxH(M 2 4, N)

1 2axyH(M 2 2, N 2 2) 1 ayyH(M, N 2 4)],

the recurrence relation (12) is used as follows. First, choose
the state numbers nx and ny(0, 1, 2, ...) which specify which
particular state is being treated. Next take initial values
(of M0 and N0) to start the calculations, and the coefficient
H(M0 , N0) is set equal to one. All the H(M, N) with (M, N)
? (M0 , N0) are then adjusted according to the assignment

H(M, N) 5 W(M, N)[2a(M 1 N 1 1) 2 E]21 (14)

for some fixed a and some trial E value, up to finite maxi-
mum values of M and N. The energy estimate is then
revised using the relation (14) for the special case M 5
M0 , N 5 N0 . The revised energy Ee is

Ee 5 2a(M0 1 N0 1 1) 2 W(M0 , N0), (15)

but it is sometimes useful to set the revised energy equal to

E: 5 REe 1 (1 2 R)E, (16)

where (16) is understood as an assignment statement and
R is a relaxation parameter which can be changed in value
to help in stabilizing convergence to a desired eigenvalue.
After many cycles the energy estimate converges. The up-
per limits on M and N can then be increased and the
calculation repeated, until eventually the energy is not
affected by further increase in the upper limits. In matrix-
theoretic terms, the calculation is using a Gauss–Seidel
(R 5 1) or successive overrelaxation (R ? 1) approach to
calculate the low eigenvalues of a large matrix. Increasing
M and N corresponds to increasing the number of basis
states, i.e., the dimension of the matrix. In the present
approach the relevant matrix elements are very simple, as
seen from Eq. (12), and the iterative solution method,
although often only useful for low eigenvalues, avoids ex-
plicit storage and manipulation of large matrices.

2.3. The Recurrence Relation for the Double-Well
Potential in Three V(X, Y, Z; Z2

x , Z2
y , Z2

z , l)
Dimensions

The algebraic manipulations needed to derive the re-
quired recurrence relation in the three dimensions are simi-
lar to those which have been used previously in connection
with the two-dimensional case. The wavefunction is taken
to have the form for three dimensions,

Cnx,ny,nz
(x, y, z) 5 expF2

a
2

(x2 1 y2 1 z2)G
(17)

O H(M, N, L)(xMyNzL).

If we use the wave function Cnx,ny,nz
(x, y, z) in the Schrö-

dinger equation (1), after some algebra we obtain the fol-
lowing recurrence relations for three dimensions

[a(2M 1 2N 1 2L 1 3) 2 E]H(M, N, L) 5 W(M, N, L),
(18)

where

W(M, N, L) 5 (M 1 2)(M 1 1)H(M 1 2, N, L) 1 (N 1 2)(N 1 1)H(M, N 1 2, L) 1 (L 1 2)(L 1 1)H(M, N, L 1 2)

1 (a2 1 Z2
x)H(M 2 2, N, L) 1 (a2 1 Z2

y)H(M, N 2 2, L) 1 (a2 1 Z2
z)H(M, N, L 2 2)

(19)
2l[axxH(M 2 4, N, L) 1 ayyH(M, N 2 4, L) 1 azzH(M, N, L 2 4)]

2 2l[axyH(M 2 2, N 2 2, L) 1 axzH(M 2 2, N, L 2 2) 1 ayzH(M, N 2 2, L 2 2)].
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The strategy for computing the energy eigenvalues in this
case is similar to that which has been used to handle the
two-dimensional system, so we will only mention the essen-
tial features here. The initial condition to start the calcula-
tion is that H(M0 , N0 , L0) 5 1. All the H(M, N, L) with
(M, N, L) ? (M0 , N0 , L0) are then calculated sequentially
from the relation

H(M, N, L)
(20)

5 W(M, N, L) [a(2M 1 2N 1 2L 1 3) 2 E]21.

The energy estimate is revised using the relation (20) for
the special case M 5 M0 , N 5 N0 , L 5 L0 . The coefficient
on the left-hand side becomes H(M0 , N0 , L0) 5 1. The
revised energy Ee thus takes the form

Ee 5 a(2M0 1 2N0 1 2L0 1 3) 2 W(M0 , N0 , L0), (21)

but it is sometimes useful to set the revised energy equal to

E: 5 REe 1 (1 2 R)E. (22)

The upper values of M, N, and L can then be increased
and the calculation repeated until eventually the energy is
unaffected by further increases in the upper limits. The
upper limit in our calculation is (M, N, L 5 Q 5 60). The
indices have the ranges

M 5 0, 1, 2, ..., Q

(fixed M) N 5 0, 1, 2, ..., Q

(fixed M, N) L 5 0, 1, 2, ..., Q.

We should point out that Aitken’s transformation has
been used in order to increase the accuracy of our results
and to accelerate the rate of convergence of our calcula-
tions.

If Sn , Sn11 , Sn12 are three successive partial sums, then
an improved estimate is

Sn 5 Sn 2
[DSn]2

D2Sn
5 Sn 2

[Sn11 2 Sn]2

[Sn12 2 2Sn11 1 Sn]
. (23)

The relation (23) has been used to improve the conver-
gence of the calculations and it has helped in improving
the accuracy of our listed results in Tables II–IV.

3. RESULTS AND DISCUSSION

The Hill determinant approach has been applied in this
paper for double-well potentials in one-, two-, and three-
dimensional systems. Eigenvalues for different values of
Z2

x , Z2
y , Z2

z , l and state numbers nx , ny , nz are listed in

Tables I–VI. Eigenvalues of such potentials in two- and
three-dimensional systems are computed for the first time
in this work.

In Table I the values of the energy are calculated over
a wide range of 2.5 # Z2

x # 150 and 0.5 # l # 25 for the
case of one-dimensional systems, for several eigenstates
with even parity and odd parity. It is clear from our listed
results in Table I that the Hill determinant approach pro-
duces high accuracy despite the large values of l, Z2

x , and
state number nx . The computations were carried out to
double-precision (20 digits) by using a humus system with
Fortran (77) programs.

TABLE I

Eigenvalues of Double-Well Potential V(x; Z2
x , l) in

One-Dimensional System for Several Eigenstates Enx
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In order to illustrate the effect of increases of the state
number nx on degeneracy of energy levels at given values
of l and Z2

x , we calculated many eigenvalues. For example,
at l 5 1 and Z2

x 5 25, 26 energy levels are calculated. It is
clear that as nx increases the splitting uEeven 2 Eoddu 5 DE
increases also.

Some important consequences have come from our in-
vestigations for double-well potentials in one-dimensional
systems: If Z2

x increases, the energy levels for states of even
and odd parities become effectively degenerate, i.e.,
Eeven 5 Eodd , for instance; the corresponding energies of
these states at Z2 5 25, l 5 1 are E0 5 E1 5
2149.219456142190880. Similar considerations hold for
other higher values of Z2

x , as is clear from listed results in
Table I and this confirmed the results conjectured by the
works [1–11] for the case of double-well potentials in one-
dimensional systems.

In Table II the values of the energy are calculated over
a wide range of 0.1 # Z2

x , Z2
y # 103, and 0.5 # l # 106 for

the double-well potential V2(x, y; Z2
x , Z2

y , l) in two dimen-
sions for two cases axx 5 ayy 5 axy 5 1 and axx 5 ayy 5 1,
axy 5 0 for four eigenstates E00 , E11 , E10 , and E01 .

When the potential V2(x, y; Z2
x , Z2

y , l) is separable, i.e.,
axy 5 0, the total energy Enx,ny of a state is the sum of two
components Et 5 Ex 1 Ey . But when axy ? 0 the potential
is nonseparable and the total energy of a state is the sum
of the three components Et 5 Ex 1 Ey 1 Exy . When the
system is separable it is clear that the splitting DE vanishes
for higher values of Z2

x , Z2
y , in contrast to the nonseparable

system, and this is clear from our listed results.
As a general remark, we note the degree of accuracy

(i.e., the number of digits) in the eigenvalues that we have
been able to obtain by our approach appears to diminish
slowly with the increase in the values of Z2

x , Z2
y at the given

TABLE II

Eigenvalues of Double-Well Potential V(x, y; Z2
x , Z2

y , l) in
Two-Dimensional System for Several Eigenstates Enx,ny
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values of l. Also the accuracy possible is usually greater
for larger values of l than for smaller values of l, at the
same values of Z2

x , Z2
y .

It is interesting to note that the energy levels character-
ized by (nx , ny) with nx and ny having different parity, i.e.,
odd–even or even–odd, remain doubly degenerate and
unsplit when the double well potential has exchange sym-
metry but for the unsymmetrical case the double energy
level splits into two different separate levels. The energy
levels showing such behaviour are E01 and E10 , and this is
clear from the listed results in Table II.

Accurate eigenvalues were obtained in all ranges of
perturbation parameters for the potential V2(x, y;
Z2

x , Z2
y , l). The results agreed with those (when available)

from other works [1–11]. For the special case
Z2

x 5 Z2
y 5 Z2, axx 5 ayy 5 1, axy 5 0, the potential (3)

reduces to the two independent double-well potentials.
The energy eigenvalues for the three-dimensional sys-

tem V3(x, y, z; Z2
x , Z2

y , Z2
z , l) are calculated, and their en-

ergy eigenvalues are quoted in Table IV, for several eigen-
states and various values of Z2

x , Z2
y , Z2

z and l.
In Tables III and IV emphasis is specially placed on the

larger values for the case Z2
x 5 Z2

y 5 Z2
z 5 Z2 because the

eigenvalues for different states E000 , E100 , E010 , E011 , E110 ,
E101 , E111 have almost degenerate eigenvalues. As Z2 in-
creases, the magnitude of the splitting between these levels
decreases, i.e., uE111 2 E000u 5 uE110 2 E100u 5 DE > 0, as

is clear from listed results in Tables III and IV and this
confirmed the results conjectured by the works [1–11] for
the case of the double-well potential in one dimension.

When the potential V3(x, y, z; Z2
x , Z2

y , Z2
z , l) is separa-

ble, i.e., axy 5 axz 5 ayz 5 0, the total energy Enx,ny,nx of a
state is the sum of three components Et 5 Ex 1 Ey 1 Ez .
But when axy 5 axz 5 ayz ? 0 the potential is nonseparable
and the total energy of a state is the sum of six components
Et 5 Ex 1 Ey 1 Ez 1 Exy 1 Exz 1 Eyz . When the system
is separable, it is clear that the splitting DE vanishes for
higher values of Z2

x , Z2
y , Z2

z , in contrast to nonseparable
system, and this clear from our listed results.

It should be pointed out that the energy levels character-
ized by eigenstates C100 , C010 , C001 and C110 , C011 , C101

remain triply degenerate and unsplit for the double-well
potential with symmetrical behaviour as l is varied from
the value of zero. This means that the perturbation does
not break the degeneracy of the perturbed system, but for
the case of unsymmetrical double-well potentials the triplet
degenerate levels split into three, and this is confirmed by
our results in Tables III and IV.

We have plotted the variation of the first few energy
levels in Figs. 3–6 as function of Z2 to display the degener-
acy of energy levels for our results in the Tables II–IV for
the double well potential in two- and three-dimensional
systems for the symmetrical case of the energy levels E00 ,
E10 , E11 and E000 , E100 , E110 , E111 for different values of

TABLE III

Eigenvalues of Double-Well Potential V(x, y, z; Z2
x , Z2

y , Z2
z , l) in

Three-Dimensional System for Several Eigenstates Enx,ny,nz
, for the

Case axx 5 ayy 5 azz 5 axy 5 axz 5 ayz 5 1
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Z2. We can observe in Figs. 3–6 that the energy levels are
degenerate for higher values of Z2.

It is important to point out that the adjustable parameter
a has played an important role in the convergence of our
calculations. The best a values in this calculation have been
obtained by numerical search, so our calculation reveals
the importance of finding the best values of the adjustable
parameter a. The general consideration governing our

choice is that, as l increases, the value of a increases.
Table VI compares some samples of the convergence of
our results for various values of an adjustable parameter
a for the states C111 and C000 .

When Z2
x 5 Z2

y 5 Z2
z 5 Z2 and for large values of Z2 with

small values of l, the convergence rate of our algorithm
for the calculation of energy levels is improved if we ap-
plied the scaling (xI R axI) to the Schrödinger equation

TABLE IV

Eigenvalues of Double-Well Potential V(x, y, z; Z2
x , Z2

y , Z2
z , l) in

Three-Dimensional System for Several Eigenstates Enx,ny,nz
, for the Case

axx 5 ayy 5 azz 5 1, axy 5 axz 5 ayz 5 0

FIG. 3. Graph of three energy levels Enx,ny for the potential V2(x, y; Z2
x , Z2

y , l 5 1) for different values of Z2 (Z2
x 5 Z2

y 5 Z2) for the case axx 5

ayy 5 1, axy 5 0. For small values of Z2, the positive energies are small; then it is necessary to multiply these energies by a factor of 30 in order to
obtain a clear figure.
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(2) it follows that the potentials take the following form:

in one dimension,

V1(x; b) 5 2x2 1 bx4; (24)

in two dimensions,

V2(x, y; b) 5 2(x2 1 y2) 1 b[axxx4 1 2axy x2y2 1 ayyy4];
(25)

TABLE VI

Convergence for Some Eigenvalues for Enx,ny,nz of Double-
Well Potential V(x, y, z; Z2

x , Z2
y , Z2

z , l) for the Case axx 5 ayy 5
azz 5 axy 5 axz 5 ayz 5 1 for Several Sets of Parameters
Z2

x , Z2
y , Z2

z , and l, for Various Values of Adjustable Parameter a.

Note. The empty spaces mean the eigenvalues cannot be obtained with
these values of a.

TABLE V

Comparison of Some Eigenvalues Which Have Been Cal-
culated by the Hill Determinant Approach with Those Cor-
responding Calculations Available in the Literature for
One- and Three-Dimensional Systems

and in three dimensions,

V3(x, y, z; b) 5 2(x2 1 y2 1 z2) 1 b[axxx4 1 ayyy4

(26)
1 azzz4 1 2axyx2y2 1 2axzx2z2 1 2ayzy2z2],

where b 5 Z23l and the energy E(Z2, l) 5 ZE(1, b).
Comparison with the results of other methods has been

made in Table V for the double-well potential in one and
three dimensions, for various values of Z2, l, and several
sets of eigenfunctions. The first comparison was made with
numerical results for the one dimensional system. It is clear
from Table IV that there is agreement between our results
and the previously published results of Balsa et al. [3],
Hodgson and Varshni [5], and Saavedra and Buendia [7]
up to 12, 21, 16 decimal places, respectively. The second
comparison, in three dimensions is for the case axx 5

FIG. 5. Graph of four energy levels Enx,ny,nz for the potential
V3(x, y, z; Z2

x , Z2
y , Z2

z , l 5 1) for different values of Z2 (Z2
x 5 Z2

y 5 Z2
z ;

Z2) for the case axx 5 ayy 5 azz 5 1, axy 5 axz 5 ayz 5 1. For small
values of Z2, the positive energies are small; then it is necessary to multiply
the energies by a factor of 20, in order to obtain a clear figure.

FIG. 4. Graph of three energy levels Enx,ny for the potential
V2(x, y; Z2

x , Z2
y , l 5 1) for different values of Z2 (Z2

x 5 Z2
y 5 Z2) for the

case axx 5 ayy 5 1, axy 5 1. For small values of Z2, the positive energies
are small; then it is necessary to multiply these energies by a factor of
30, in order to obtain a clear figure.
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ayy 5 azz 5 1, axy 5 axz 5 ayz 5 0; with other workers
results [4, 5, 7]. At higher values of Z2 5 10, at l 5 1, it
was found that the Hill determinant approach faced greater
convergence difficulties in the three-dimensional case.
Such comparison shows that the present technique is highly
accurate. Higher accuracies still can be achieved at the
expense of greater computation times.
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